\sim	_	
()	7	
w		ь.

A sequence of radioactive decays starts with nuclide ${\bf P}$ and ends with an isotope of ${\bf P}$.

Which is a possible sequence for these decays?

Α	one alpha deca	y followed by	y four β- deca	ays	0
		<i>j</i>	,	- J -	-

B one alpha decay followed by two β- decays

C two alpha decays followed by two β- decays

D two alpha decays followed by one β- decay

(Total 1 mark)

Q2.

The alpha particle, positron and proton have different charge-to-mass ratios.

Which row shows the particles that have the greatest and the smallest value of this ratio?

	Greatest charge-to-mass ratio	Smallest charge-to-mass ratio
Α	positron	alpha particle
В	positron	proton
С	alpha particle	proton
D	alpha particle	positron

(Total 1 mark)

Q3.

The quark structure of the antiparticle of the K^+ meson is

A us

B ūd

C us

D $\overline{d}s$

_	-
m	1
w	4

Which nuclear change results in the nucleus with the greatest specific charge?

- A the alpha decay of a 82 Po nucleus
- B the beta-minus decay of a $^{28}{^{12}}{^{Mg}}$ nucleus
- the beta-plus decay of a $^{39}_{20}\mathrm{Ca}$ nucleus
- D electron capture by a 47^{Ag} nucleus

(Total 1 mark)

Q5.

An ion has a specific charge of $-7.1 \times 10^7 \ C \ kg^{-1}$. It is held stationary in a vertical electric field on the surface of the Earth.

What are the magnitude and direction of the electric field?

- **A** $1.38 \times 10^{-7} \text{ V m}^{-1} \text{ upwards}$
- **B** $1.38 \times 10^{-7} \text{ V m}^{-1} \text{ downwards}$
- **C** $7.24 \times 10^6 \text{ V m}^{-1} \text{ upwards}$
- **D** 7.24 × 10 6 V m $^{-1}$ downwards

(Total 1 mark)

Q6.

electrostatic force

Which particle pair has the largest magnitude of **gravitational force** when separated by the same distance?

- A an electron and a positive pion
- B a helium nucleus and a proton
- C a proton and a positive pion
- **D** a proton and an electron

Q7.

Uranium-238 absorbs a neutron in the first stage in a series of nuclear reactions that end in a nucleus Z.

$$^{238}_{92}U + n \rightarrow X 92$$

$$X \to Y \, + \, \beta^{\scriptscriptstyle -} \, + \, \, \overline{v_{\scriptscriptstyle e}}$$

$$Y \rightarrow Z + \beta^- + \overline{v_e}$$

How many neutrons does Z have?

A 144

0

B 145

0

C 149

0

D 237

0

(Total 1 mark)

Q8.

An electron and a positron annihilate each other.

Which quantity is **not** conserved in the annihilation?

A electric charge

 \circ

B kinetic energy

0

C lepton number

0

D momentum

(Total 1 mark)

Q9.

Which exchange particle transfers charge during electron capture?

A meson

0

B pion

0

C virtual photon

0

D W boson

0

$\mathbf{\cap}$	4	Λ
W	1	U.

A free neutron decays	to prod	uce a	proton	and
-----------------------	---------	-------	--------	-----

Α	an electron and	d an anti	neutrino.	0

B an electron and a neutrino.

C a positron and an antineutrino.

D a positron and a neutrino.

(Total 1 mark)

Q11.

A nucleus of bismuth-209 $\binom{209}{83} \text{Bi}$ absorbs a neutron. The newly formed nucleus

subsequently decays in two stages to form a nucleus of nuclide \mathbf{X} . One beta-minus particle and one alpha particle are emitted during these two decays.

What are the nucleon number and the proton number of X?

	Nucleon number	Proton number	
Α	205	82	0
В	205	83	0
С	206	82	0
D	206	83	0

(Total 1 mark)

Q12.

The concept of exchange particles was introduced to explain forces between elementary particles.

This concept requires that exchange particles have

Α	charge.	0

Q13.

A nucleus contains N neutrons and Z protons.

Which combination of N and Z gives a nucleus with the greatest specific charge?

	N	Z	
Α	6	5	0
В	8	7	0
С	16	13	0
D	20	17	0

(Total 1 mark)

Q14.

Which statement about muons is correct?

Α	They consist of a quark and an antiquark.	0
В	They include pions and kaons.	0
С	They are subject to the strong interaction.	0
D	They decay into electrons.	0

Q15.

The diagram represents a quark change in which an electron antineutrino is produced.

What are **E**, **F** and **G**?

	E	F	G	
Α	up quark	down quark	β-	0
В	down quark	up quark	β-	0
С	up quark	down quark	β+	0
D	down quark	up quark	β+	0

(Total 1 mark)

Q16.

Which row has the largest value for

specific charge of the particle in column X specific charge of the particle in column Y?

	x	Y	
Α	electron	alpha particle	0
В	alpha particle	electron	0
С	electron	proton	0
D	proton	alpha particle	0

Q17.Which diagram represents the process of electron capture?

Q18.

Which row is correct?

	Name of particle	Classification	Quark structure	
Α	antineutron	meson	$\overline{u}\overline{u}\overline{d}$	0
В	positive kaon	baryon	\overline{u} s	0
С	antiproton	baryon	$\overline{u}\overline{u}\overline{d}$	0
D	positive pion	meson	\overline{u} d	0

(Total 1 mark)

Q19.

An alpha particle and a nucleus of boron ${}^{10}_{5}{}^{B}$ interact to form an unstable nucleus and a free neutron.

The unstable nucleus decays by positron emission to form a nucleus of nuclide ${\bf X}$.

What is X?

$$A \frac{13}{5}B$$

(Total 1 mark)

Q20.

What is the specific charge of a ${}^{13}_{C}$ nucleus?

A
$$4.4 \times 10^7 \,\mathrm{C \, kg^{-1}}$$

B
$$5.2 \times 10^7 \,\mathrm{C \, kg^{-1}}$$

c
$$8.3 \times 10^7 \,\mathrm{C \, kg^{-1}}$$

D
$$2.1 \times 10^8 \text{ C kg}^{-1}$$

Q21.

Which row describes the variation with distance of the strong nuclear force?

	Attractive	Repulsive	
Α	beyond 3 fm	from 0.5 fm to 3 fm	0
В	from 0.5 fm to 3 fm	beyond 3 fm	0
С	from 0.5 fm to 3 fm	up to 0.5 fm	0
D	up to 0.5 fm	from 0.5 fm to 3 fm	0

(Total 1 mark)

Q22.

Which statement is correct?

			(Total 1 mark
D	Strangeness can only have a value of 0 or −1	0	
С	Strangeness can only change in strong interactions.	0	
В	Strange particles are always created in pairs.	0	
A	All strange particles are mesons.	0	

(Total 1 mark)

Q23.

Which combination of quarks is possible?

A	sd	0
В	sū	0
С	sūd	0
D	ud	0

Q24.

In photoelectricity, $V_{\rm s}$ is the stopping potential.

What quantity is eV_s ?

Α	energy of an incident photon	
В	maximum kinetic energy of a photoelectron	0

C threshold frequency × the Planck constant

D work function